Course Outline
- 
        segmentGetting Started (Don't Skip This Part)
- 
        segmentStatistics and Data Science: A Modeling Approach
- 
        segmentPART I: EXPLORING VARIATION
- 
        segmentChapter 1 - Welcome to Statistics: A Modeling Approach
- 
        segmentChapter 2 - Understanding Data
- 
        segmentChapter 3 - Examining Distributions
- 
        segmentChapter 4 - Explaining Variation
- 
        segmentPART II: MODELING VARIATION
- 
        segmentChapter 5 - A Simple Model
- 
        segmentChapter 6 - Quantifying Error
- 
        segmentChapter 7 - Adding an Explanatory Variable to the Model
- 
        segmentChapter 8 - Digging Deeper into Group Models
- 
        segmentChapter 9 - Models with a Quantitative Explanatory Variable
- 
        segmentPART III: EVALUATING MODELS
- 
        segmentChapter 10 - The Logic of Inference
- 
        segmentChapter 11 - Model Comparison with F
- 
                
                  11.9 Chapter 11 Review Questions
 
- 
        segmentChapter 12 - Parameter Estimation and Confidence Intervals
- 
        segmentChapter 13 - What You Have Learned
- 
        segmentFinishing Up (Don't Skip This Part!)
- 
        segmentResources
list High School / Advanced Statistics and Data Science I (ABC)
      
        
        
          
Book          
        
        
      
      
        
      
      
    
    
  11.9 Chapter 11 Review Questions
require(coursekata)
# data prep - rename
college_recent_grads$totalgrads <- college_recent_grads$total
college_recent_grads$p25th_income <- college_recent_grads$p25th
college_recent_grads$median_income <- college_recent_grads$median
college_recent_grads$p75th_income <- college_recent_grads$p75th
# create new engineering variable
college_recent_grads <- mutate(college_recent_grads, engineering = ifelse(major_category == "Engineering", "TRUE", "FALSE"))
# create STEM variable
college_recent_grads <- mutate(college_recent_grads, STEM = ifelse(major_category == "Engineering" | major_category ==  "Biology & Life Science" | major_category == "Computers & Mathematics" |major_category ==  "Physical Sciences", "TRUE", "FALSE"))
# data prep
collegegrads <- select(college_recent_grads, major, major_category, engineering, STEM, totalgrads, employed_fulltime, unemployment_rate, p25th_income, median_income, p75th_income)
collegegrads$median_income <- collegegrads$median_income/1000
# Run the following code
gf_histogram(~median_income, data = collegegrads) %>%
  gf_facet_grid(STEM ~ .) %>%
  gf_labs(x = "Median Income (in thousands of dollars)")CK Code: C2_Code_Review1_01
require(coursekata)
# data prep - rename
college_recent_grads$totalgrads <- college_recent_grads$total
college_recent_grads$p25th_income <- college_recent_grads$p25th
college_recent_grads$median_income <- college_recent_grads$median
college_recent_grads$p75th_income <- college_recent_grads$p75th
# create new engineering variable
college_recent_grads <- mutate(college_recent_grads, engineering = ifelse(major_category == "Engineering", "TRUE", "FALSE"))
# create STEM variable
college_recent_grads <- mutate(college_recent_grads, STEM = ifelse(major_category == "Engineering" | major_category ==  "Biology & Life Science" | major_category == "Computers & Mathematics" |major_category ==  "Physical Sciences", "TRUE", "FALSE"))
# data prep
collegegrads <- select(college_recent_grads, major, major_category, engineering, STEM, totalgrads, employed_fulltime, unemployment_rate, p25th_income, median_income, p75th_income)
collegegrads$median_income <- collegegrads$median_income/1000
# Run your code hereCK Code: C2_Code_Review1_02
require(coursekata)
# data prep - rename
college_recent_grads$totalgrads <- college_recent_grads$total
college_recent_grads$p25th_income <- college_recent_grads$p25th
college_recent_grads$median_income <- college_recent_grads$median
college_recent_grads$p75th_income <- college_recent_grads$p75th
# create new engineering variable
college_recent_grads <- mutate(college_recent_grads, engineering = ifelse(major_category == "Engineering", "TRUE", "FALSE"))
# create STEM variable
college_recent_grads <- mutate(college_recent_grads, STEM = ifelse(major_category == "Engineering" | major_category ==  "Biology & Life Science" | major_category == "Computers & Mathematics" |major_category ==  "Physical Sciences", "TRUE", "FALSE"))
# data prep
collegegrads <- select(college_recent_grads, major, major_category, engineering, STEM, totalgrads, employed_fulltime, unemployment_rate, p25th_income, median_income, p75th_income)
collegegrads$median_income <- collegegrads$median_income/1000
# Run your code hereCK Code: C2_Code_Review1_03