Course Outline
-
segmentGetting Started (Don't Skip This Part)
-
segmentStatistics and Data Science: A Modeling Approach
-
segmentPART I: EXPLORING VARIATION
-
segmentChapter 1 - Welcome to Statistics: A Modeling Approach
-
segmentChapter 2 - Understanding Data
-
segmentChapter 3 - Examining Distributions
-
segmentChapter 4 - Explaining Variation
-
segmentPART II: MODELING VARIATION
-
segmentChapter 5 - A Simple Model
-
segmentChapter 6 - Quantifying Error
-
segmentChapter 7 - Adding an Explanatory Variable to the Model
-
segmentChapter 8 - Digging Deeper into Group Models
-
segmentChapter 9 - Models with a Quantitative Explanatory Variable
-
segmentPART III: EVALUATING MODELS
-
segmentChapter 10 - The Logic of Inference
-
segmentChapter 11 - Model Comparison with F
-
segmentChapter 12 - Parameter Estimation and Confidence Intervals
-
segmentPART IV: MULTIVARIATE MODELS
-
segmentChapter 13 - Introduction to Multivariate Models
-
segmentChapter 14 - Multivariate Model Comparisons
-
segmentChapter 15 - Models with Interactions
-
segmentChapter 16 - More Models with Interactions
-
segmentFinishing Up (Don't Skip This Part!)
-
End of Course Survey (Required)
-
-
segmentResources
list College / Advanced Statistics with R (ABCD)
Book
Post-Survey (Required)
You’re at the end of the book, and probably at the end of the course. Thanks for working so hard on CourseKata Statistics and Data Science! Before you go, please answer these questions (estimated time: 5 minutes). Your answers will help us improve the online book. You may skip any question you don’t feel comfortable answering.