Course Outline
-
segmentGetting Started (Don't Skip This Part)
-
segmentStatistics and Data Science: A Modeling Approach
-
segmentPART I: EXPLORING VARIATION
-
segmentChapter 1 - Welcome to Statistics: A Modeling Approach
-
segmentChapter 2 - Understanding Data
-
segmentChapter 3 - Examining Distributions
-
segmentChapter 4 - Explaining Variation
-
segmentPART II: MODELING VARIATION
-
segmentChapter 5 - A Simple Model
-
segmentChapter 6 - Quantifying Error
-
segmentChapter 7 - Adding an Explanatory Variable to the Model
-
segmentChapter 8 - Digging Deeper into Group Models
-
segmentChapter 9 - Models with a Quantitative Explanatory Variable
-
segmentPART III: EVALUATING MODELS
-
segmentChapter 10 - The Logic of Inference
-
segmentChapter 11 - Model Comparison with F
-
11.14 Chapter 11 Review Questions
-
segmentChapter 12 - Parameter Estimation and Confidence Intervals
-
segmentChapter 13 - What You Have Learned
-
segmentFinishing Up (Don't Skip This Part!)
-
segmentResources
list High School / Advanced Statistics and Data Science I (ABC)
Book
11.14 Chapter 11 Review Questions
NOTE: Depending on your internet connection, this page may take a moment to load. In order to avoid automatic scrolling of the page, please wait until all of the questions have fully loaded before submitting responses.
require(coursekata)
# data prep - rename
college_recent_grads$totalgrads <- college_recent_grads$total
college_recent_grads$p25th_income <- college_recent_grads$p25th
college_recent_grads$median_income <- college_recent_grads$median
college_recent_grads$p75th_income <- college_recent_grads$p75th
# create new engineering variable
college_recent_grads <- mutate(college_recent_grads, engineering = ifelse(major_category == "Engineering", "TRUE", "FALSE"))
# create STEM variable
college_recent_grads <- mutate(college_recent_grads, STEM = ifelse(major_category == "Engineering" | major_category == "Biology & Life Science" | major_category == "Computers & Mathematics" |major_category == "Physical Sciences", "TRUE", "FALSE"))
# data prep
collegegrads <- select(college_recent_grads, major, major_category, engineering, STEM, totalgrads, employed_fulltime, unemployment_rate, p25th_income, median_income, p75th_income)
collegegrads$median_income <- collegegrads$median_income/1000
# Run the following code
gf_histogram(~median_income, data = collegegrads) %>%
gf_facet_grid(STEM ~ .) %>%
gf_labs(x = "Median Income (in thousands of dollars)")
require(coursekata)
# data prep - rename
college_recent_grads$totalgrads <- college_recent_grads$total
college_recent_grads$p25th_income <- college_recent_grads$p25th
college_recent_grads$median_income <- college_recent_grads$median
college_recent_grads$p75th_income <- college_recent_grads$p75th
# create new engineering variable
college_recent_grads <- mutate(college_recent_grads, engineering = ifelse(major_category == "Engineering", "TRUE", "FALSE"))
# create STEM variable
college_recent_grads <- mutate(college_recent_grads, STEM = ifelse(major_category == "Engineering" | major_category == "Biology & Life Science" | major_category == "Computers & Mathematics" |major_category == "Physical Sciences", "TRUE", "FALSE"))
# data prep
collegegrads <- select(college_recent_grads, major, major_category, engineering, STEM, totalgrads, employed_fulltime, unemployment_rate, p25th_income, median_income, p75th_income)
collegegrads$median_income <- collegegrads$median_income/1000
# Run your code here
require(coursekata)
# data prep - rename
college_recent_grads$totalgrads <- college_recent_grads$total
college_recent_grads$p25th_income <- college_recent_grads$p25th
college_recent_grads$median_income <- college_recent_grads$median
college_recent_grads$p75th_income <- college_recent_grads$p75th
# create new engineering variable
college_recent_grads <- mutate(college_recent_grads, engineering = ifelse(major_category == "Engineering", "TRUE", "FALSE"))
# create STEM variable
college_recent_grads <- mutate(college_recent_grads, STEM = ifelse(major_category == "Engineering" | major_category == "Biology & Life Science" | major_category == "Computers & Mathematics" |major_category == "Physical Sciences", "TRUE", "FALSE"))
# data prep
collegegrads <- select(college_recent_grads, major, major_category, engineering, STEM, totalgrads, employed_fulltime, unemployment_rate, p25th_income, median_income, p75th_income)
collegegrads$median_income <- collegegrads$median_income/1000
# Run your code here